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Abstract. We investigate the effect of mutations on adaptability in a bit-string model of invading species
in a random environment. The truncation-like fitness function depends on the Hamming distance between
the optimal (wild)-type at each site and the invading species for a square lattice. We allow invasion if
the relative fitness is above or equal to an adjustable threshold. We have also allowed for the decay and
extinction of a species at a site that it has already invaded. We find that the invading species always
percolates through regions of arbitrary size, for all threshold values, with a time parameter which depends
on the threshold and the size in the absence of decay. If decay is introduced then there is a critical value
of the threshold variable beyond which the invading species is confined. Radius of gyration and average
population of a colony of mutants have a power-law dependence with time and relevant fractal dimensions
are calculated for percolation.

PACS. 02.60.Lj Ordinary and partial differential equations; boundary value problems – 05.10.Ln Monte
Carlo methods – 05.45.Df Fractals

1 Introduction

It is well known that neutral mutations play a very impor-
tant role in evolution [1], as they allow the quasi species
to explore the nearby genetic phase space and thereby to
adapt to new environmental conditions which may select
for traits differing from the wild type or the consensus
genome. The extremely high mutation rates encountered
in bacteria or viruses, on the other hand, make it very dif-
ficult to combat them, as new breeds prove resistant to the
antibodies developed. It has recently been conjectured [2]
that the HIV infection proceeds not via a suppression of
the immune system, but due to the extremely rapid muta-
tion of the virus, so that resistant breeds keep appearing
as soon as new antibodies are generated.

In this paper we introduce a model which may be re-
garded as either a geographical landscape or an organ-
ism being invaded by an array of neutral mutants of
some species. The different mutants as well as the local
ideal-type are represented by random bit-strings consist-
ing of 1’s and 0’s, which can be written vi(0, 1, ....) and
hi(0, 1, ....) respectively, where they indicate lattice sites.

The fitness function is defined as f(dij) = 1−dij where

dij =
1
l

l∑

α=1

|viα − hjα| (1)

is the distance between the genome of the organism, vi at
site i, and the ideal type, hj at site j which are nearest
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neighbors. The site j is invaded by the organism occupy-
ing that nearest neighbor of j which satisfies the condi-
tion f(dij) ≥ r nearest neighbor bit-string characteristics
being carried, and is left vacant if no nearest neighbor sat-
isfies this condition. The parameter r may be regarded as
a barrier height, or, alternatively 1 − r the maximum al-
lowed relative distance from the ideal type at site j. At a
given constant mutation rate µ, the neighboring organism
may eventually suffer such mutations as to bring it closer
to the target site, in which case it will eventually occupy
it. We consider two variants of this model: A) an organ-
ism which can not surmount the surrounding barriers is
allowed to stagnate at that site. B) The organism at any
given site is killed off (decays) with a probability equal to
the mutation rate or with the probability to decay. The
cases are denoted as WOD (without decay) and WD (with
decay) respectively, in what follows.

The radius of gyration of a growing colony of mutants
behaves as

R2
g(t) ∼ tγ (2)

while the total number of occupied sites n(t), goes as

n(t) ∼ tβ (3)

where the exponents take different values over the initial,
intermediate and late stages of the growth. In these dif-
ferent regimes,

n ∼ R
df
g (4)

yields the relation df = 2β/γ [3–7] for the fractal dimen-
sion of the clusters. Our simulation results for the time
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Table 1. WOD case γ and β values for various fitness thresh-
old and mutation rates.

r µ γ β
0.0625 0.00 1.996 ± 0.000 1.996 ± 0.000
0.125 0.00 1.996 ± 0.000 1.996 ± 0.000
0.1875 0.00 1.996 ± 0.000 1.996 ± 0.000
0.25 0.00 1.996 ± 0.000 1.996 ± 0.000

0.3125 0.00 1.996 ± 0.001 1.996 ± 0.000
0.375 0.00 2.002 ± 0.003 2.000 ± 0.002
0.4375 0.00 2.018 ± 0.002 2.016 ± 0.002

0.5 0.00 1.70 ± 0.08 1.60 ± 0.08
0.5 0.01 2.021 ± 0.001 2.022 ± 0.008

0.5625 0.01 2.05 ± 0.04 2.08 ± 0.02
0.625 0.01 2.06 ± 0.02 2.06 ± 0.02
0.6875 0.01 2.09 ± 0.04 2.11 ± 0.04

..... ..... ..... .....

Table 2. WD case γ and β values for various fitness threshold
and mutation rates.

r µ γ β
0.5 0.01 2.016 ± 0.007 2.03 ± 0.01
0.5 0.5 2.020 ± 0.006 2.019 ± 0.008

0.5625 0.01 2.06 ± 0.01 2.047 ± 0.009
0.5625 0.5 2.04 ± 0.02 2.04 ± 0.03

Table 3. WOD case fractal dimensions for various fitness
threshold and mutation rates calculated by the first method.

r µ df1

.... .... ....
0.3125 0.00 2.000 ± 0.001
0.375 0.00 1.998 ± 0.005
0.4375 0.00 1.998 ± 0.004

0.5 0.00 1.88 ± 0.09
0.5 0.01 2.001 ± 0.004

0.5625 0.01 2.03 ± 0.06
0.625 0.01 2.00 ± 0.04
0.6875 0.01 2.02 ± 0.08

..... ..... ......

Table 4. WD case fractal dimensions for various fitness
threshold and mutation rates calculated by the first method.

r µ df1

0.5 0.01 2.01 ± 0.02
0.5 0.5 2.00 ± 0.01

0.5625 0.01 1.99 ± 0.02
0.5625 0.5 2.00 ± 0.05

dependence of the radius of gyration and the total popu-
lation are shown in Tables 1 and 2.

A second method via which we may determine the frac-
tal dimension df of M ∼ Ldf where L is the length of the
sample lattice size, is the box-counting method, which is
also implemented for comparison (see Tabs. 5 and 6).

Initially, for a totally random organism at a random
site, if n is the number of 1’s that is the number of mis-
matches between the genome of the organism and genome
of the ideal type at the site, the fitness will be f = 1 − n

l
where l is the length of the bit-strings. On the other hand,

Table 5. WOD case fractal dimensions for various fitness
threshold and mutation rates calculated by the second method.

r µ df2

0.375 0.00 2.0000 ± 0.0000
4375 0.00 1.9991 ± 0.0004
0.5 0.00 1.87 ± 0.05
0.5 0.01 2.00 ± 0.00

0.5625 0.01 2.00 ± 0.00
0.625 0.01 2.00 ± 0.00
0.6875 0.01 2.00 ± 0.00
...... ..... .....

Table 6. WD case fractal dimensions for various fitness
threshold and mutation rates calculated by the second method.

r µ df2

0.5 0.01 1.9992 ± 0.0000
0.5 0.5 1.9999 ± 0.0000

0.5625 0.01 1.9874 ± 0.0004
0.5625 0.5 1.9956 ± 0.0002

the probability that the number of mismatches will be n is,

P (n) =
1
2l

l!
(l − n)!n!

. (5)

If the fitness tolerates a minimum number m of matching
alleles, the fitness threshold is then r = m

l . For the prob-
ability of fitness to be greater than or equal to the fitness
threshold, namely the probability that l − n ≥ m is,

g1(r) =
1
2l

l−m−1∑

0

l!
(l − n)!n!

for
m

l
≤ r <

m + 1
l

. (6)

We moreover require that the organism dies off with a
probability g2(r) = 1− g1(r) in the WD model. We define
this quantity as the decay probability. Clearly, at later
stages of the evolution of the interface, g1(r) will acquire
a history and site dependence. Neglecting this dependence
as we do here, gives rise to an effective Mean Field (MF)-
like approximation.

2 Monte Carlo simulation

We performed discrete time simulations of our model on a
square lattice. Organisms vi are allowed to start from the
center of a 513×513 lattice in our model. The templates or
“wild types” associated with each site hj as well as the or-
ganisms vi consist of randomly chosen bit-strings of length
l = 16. At each time step, the bit-strings of the organisms
occupying the sites are mutated with a probability µ per
bit, according to mod(x + 1, 2) to simulate the mutations
where x is 0 or 1. An already occupied site can not be
occupied by a fitter neighbor. The results are averaged
over 1000 different runs with different initial conditions
(different initial vi) in each case for the simulations.

Even in the absence of mutation, percolation was
achieved for fitness threshold r ≤ 0.5 in our model and
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Table 7. Percolation times for the method without decay (WOD) case for various fitness threshold and mutation rates. tSA

stands for semi-analytic calculation (Sect. 3) and tE stands for the entropy approach (Sect. 4).

r g1(r) µ MCS Time tSA tE

0.0625 1.000 0.00 256 ± 0 256 256
0.125 0.998 0.00 256 ± 0 256 257
0.1875 0.989 0.00 256.0 ± 0.2 256 261.7
0.25 0.962 0.00 256.9 ± 0.7 258 275.8

0.3125 0.895 0.00 260.4 ± 1.1 261 312.2
0.375 0.773 0.00 270.9 ± 1.7 271 381.2
0.4375 0.598 0.00 298.2 ± 3.0 295 473.5

0.5 0.402 0.00 493.7 ± 63.7 361 512(g1eff (r) = 0.5)
0.5 0.01 324.3 ± 2.7

0.5625 0.01 408.8 ± 4.3
0.625 0.01 609.8 ± 8.8
0.6875 0.01 1152.0 ± 17.9

... ... ...

no matter what the mutation rate is there was no per-
colation beyond the fitness threshold r = 0.5625 for WD
case in the presence of mutations. There is always perco-
lation as long as there is mutation for WOD case. It is
hard to make an analytical calculation for the cases with
mutation and percolation happens only for m ≤ 9 in WD
cases as it was pointed out earlier.

3 Semi-analytical approach

We define the percolation time as the time it takes for
the organism to reach one of the edges of the lattice. We
do the following to estimate this time. One can write the
following for the population density at site (x, y) at time
t as,

∂P (x, y, t)
∂t

= D∇2P (x, y, t) − Γ1P (x, y, t) (7)

where,

D = lim
∆x→0∆t→0

g1(r)
∆x2

∆t
(8)

is the diffusion coefficient and

Γ1 = lim
∆t→0

g2(r) − 4g1(r)
∆t

(9)

is the effective decay rate, within the MF-like approxima-
tion introduced in the last section. Then,

P (x, y, t) =
1

4πDt
e−

x2+y2
4Dt −Γ1t (10)

is a solution with initial condition P = δ(x)δ(y) at time
equals zero. This solution can be used to calculate the
time dependence of radius of gyration by integrating the
square of radius of the site weighted by the population
density. The result to the first order is simply,

R2
g ∼ t2. (11)

The velocity of the wave fronts is given by an equation
similar to equation (7) known as the two dimensional form
of the Fisher-Kolmogorov-Petrosvky-Piscounov equation,

∂Pwf(x, y, t)
∂t

=

D∇2Pwf (x, y, t) − Γ1Pwf (x, y, t) − Pwf (x, y, t)3 (12)

where Pwf (x, y, t) is the evolution of population density
on the wave front [8]. Neglecting the cubic term and using
symmetry of the growth, the traveling wave solution,

Pwf (x, y, t) ∼ exp(−k(x − vt) − k(y − vt)) (13)

can be substituted into the equation where v is the ve-
locity. The discriminant of the second order equation in k
should be negative to have a traveling wave solution rather
than pure decay. This condition together with |v| < 1 con-
dition for the velocity (the probability of percolating to
the nearest neighbor site is less than unity at each unit
time step) yields g1(r) > 0.432 for WD case. Remember-
ing that g1(0.5) = 0.402 one can choose r < 0.5. Thus,
r = 0.5, µ = 0.0 is the critical point. One should con-
clude that the differential equation does not represent the
physical phenomenon of the fractal growth at the critical
point but serves as to identify the upper bound for normal
growth. Considering the microscopic cutoffs at this point
is irrelevant here, since the solutions and the results of
simulations are treated for large times and flat fronts.

Time to reach the edge of the lattice, i.e. a percolation
time, can be estimated numerically as shown in Table 7.
Here, a discretized form of the differential equation (8) is
solved for lattice size L = 513 as a fast simulation method,

P (x, y, t + ∆t) = P (x, y, t) + g1(r)(P (x + ∆x, y, t)
+ P (x − ∆x, y, t) + P (x, y + ∆y, t)

+ P (x, y − ∆y, t)) − g2(r)P (x, y, t), (14)

which serves as sort of a hybrid model for the Monte Carlo
Simulation (MCS). Such hybrid models have been consid-
ered before in the literature [9] for reaction diffusion pro-
cesses which is similar to the case we study here. Thus,
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Fig. 1. Surface of population for fitness treshold r = 0.375 and
mutation rate µ = 0.00. The growth starts from the center of
point of the lattice in all subsequent figures.

our semi-analytical approach can be considered as an in-
terpolation to the growth rule which we implement via a
discrete lattice MC simulation as described before. The
initial conditions are P (0, 0, 0) = 1 at the origin (at the
center) of the lattice, and P (x, y, 0) = 0 elsewhere. The
population density at each site is updated at each iter-
ation of the algorithm according to equation (11). Since
the argument of the exponential factor Γ1t in the solution
(Eq. (10)) pushes the population density to values larger
than 1 which is prohibited according to the growth rule,
what we do is to enforce the restriction P (x, y, t) ≤ 1 by
hand in the algorithm. This is equivalent to implement-
ing equation (11) given a particular interface configuration
until the value unity is attained at any one of the neigh-
boring sites, and then freezing that value unless it becomes
smaller than unity once again because of the nonzero de-
cay probability.

The percolation time is measured as the first instant
that the value of population density reaches 1 at some
site on the edges of the lattice. This analysis gives the
percolation times in agreement with MCS results when r
is smaller than 0.5 (See Tab. 7). The outcome patterns of
surface growth for the fast simulation method introduced
in this section overlaps with those of Figures 1 and 2. The
cases for r < 0.375 are always diamond like figures and
not shown here.

4 The entropy approach

That the percolation is achieved for fitness threshold
r ≤ 0.5 in the absence of mutations can be proven by
the following argument. In terms of number states and
probability, entropy can be written as,

S = k ln Ω = −k
∑

i

Pi ln Pi (15)
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Fig. 2. Surface of population for fitness treshold r = 0.4375
and mutation rate µ = 0.00.

where Ω is the weighted phase space summation, and the
characteristic time of the system (considering the fact that
time will be proportional to the number of sites visited in
the configuration space) is then

t ∼ Ω =
∏

i

P−Pi

i . (16)

We approximate the partial phase space volume Ωij for
two adjacent sites, ij, by

Ωij ∼ P−Pi

i P
−Pj

j . (17)

Within the MF-like approach where we have assumed the
probability for invasion Pi of a site to be given by g1(r)
( independently of i ), the hopping time thop becomes, to
the leading order,

thop ∼ (g1(r)−g1(r))2. (18)

On the other hand, we estimate the time during which the
interface will be frozen at an occupied site, with an empty
neighboring site, by

tfrozen ∼ g1(r)−g1(r)g2(r)−g2(r) (19)

within the same approximation. If thop ≤ tfrozen there
will be chance to spread and thus percolation. This con-
dition yields g1(r) ≥ 0.5 for the percolation threshold in
the absence of mutations. From Table 7 we see that this
condition is satisfied for r < 0.5, and the interface will
certainly reach one of the edges of the lattice. Here, the
MF-like semi-analytical approach discussed in Section 3
can successfully be accomplished, while r = 0.5 case may
or may not reach there as it is observed in our MC simula-
tions. Thus, the MF approach breaks down in the vicinity
of the critical point (percolation threshold).
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Fig. 3. Population for fitness treshold r = 0.5 and mutation
rate µ = 0.00.

We will now estimate the time of percolation to the
edge in case it reaches there. The time to reach the edge
of the lattice for r = 0.5 can be calculated by

tpercolation = thop × L − 1
2

(20)

We find, tpercolation = 512 (with the 0.5 effective value
of g1eff (0.5)) if L = 513 to be compared with the earlier
results in Table 7 as the second way of estimating the
percolation time. (Our result seems to be off by about
18 units, however for orthogonal growth case one finds
511.3± 80.0 for MCS, which is off by an amount less than
1 unit. Here, we mean the consideration of arrival to the
upper edge or the righthand edge of the lattice by the
orthogonal growth case.) This type of calculation gives the
best estimate for percolation of r = 0.5 and g1eff (r) = 0.5
(it has also been checked for different lattice sizes), since
in this case, the probability for invading a neighboring site
is equal to the probability that this is prohibited (Ω−1

hop =
Ω−1

frozen). That is, the system is equally likely to be found
in any one of its accessible states. Therefore, the above
approach can be applied successfully, due to the definition
of the micro-canonical ensemble.

5 Results

Figures 1–4 depicts the surface of invaded sites at the time
the percolation is achieved for the MCS. The values of γ
and β for large times and, WOD and WD cases are given
in Tables 1 and 2. The values of γ and β for r = 0.5 and
µ = 0.00 are measured for small times (t ≤ 100) , since
the slope of the lines in Figure 5 has meaning in this case
as not all the samples are supposed to reach the edges of
the lattice for large times.

The fractal dimensions, obtained in two different ways,
in equation (4) and the box-counting method, are given in
Tables 3–6. The fractal dimension for r = 0.5 and µ = 0.00
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Fig. 4. Surface of population for the case without decay for
fitness treshold r = 0.5 and mutation rate µ = 0.01.
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Fig. 5. Time dependence of square of radius of gyration and
population, averaged over 1000 samples for r = 0.5 and µ =
0.00.

Table 8. Percolation times for the model with decay (WD)
for various fitness treshold and mutation rates.

r µ MCS Time
0.5 0.01 330.2 ± 3.1
0.5 0.5 326.4 ± 2.9

0.5625 0.01 465.7 ± 7.8
0.5625 0.5 445.7 ± 6.5

is 1.88±0.09 by the first method and is 1.87±0.05 by the
second method which are close to the invasion percolation
fractal dimension 1.89. The rest have the fractal dimension
equal to 2 and these are compact or closed packed sets [6].

The Tables 7 and 8 give the percolation times (time
to reach the edge of the lattice) for WOD and WD cases.
Note that the percolation time for WD case is larger than
the time for WOD case for the same fitness threshold and
mutation rates since decay is not a desired trait for per-
colation.
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6 Discussion

The growing patterns are observed to be compact except
for the r = 0.5 and µ = 0.00 case, which serves as the
critical point beyond which percolation is impossible when
there is no mutation. The pattern yields a fractal with a
fractal dimension of the invasion percolation for this case.
The most interesting feature in WD case is that, the fit-
ness threshold value r = 0.5625, which is larger than the
value r = 0.5 at the critical point allows percolation in the
presence of mutations, though the growing pattern is not
a fractal but compact. So, even a small amount of muta-
tion may play a vital role for the invasion of the species
at larger values of fitness threshold for which percolation
would not be possible at the absence of it.

The amount of error made during the calculation of
fractal dimension by the exponential scaling method is
larger than the calculation by the box-counting method,
which proves to be more trustworthy. On the other hand,
the errors in the MCS is large only for the critical point
case, where the fluctuations are large in the time calcula-
tion.
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